CCXXXIII.-Molecular Volumes at Absolute Zero. Part I. Density as a Function of Temperature.

By Samuel Sdgden.

During the last few years it has been shown by the author and others that there are several empirical relations between surface tension, density, and temperature which hold with considerable accuracy over a large range of the variables concerned. Of these, the most important for the present discussion are van der Waals's equation (Z. physikal. Chem., 1894, 13, 716) for the variation of surface tension with temperature,

$$
\begin{equation*}
\gamma=\gamma_{0}\left(1-T_{-}\right)^{6 / 5} . \tag{1}
\end{equation*}
$$

and Macleod's relation (Trans. Faraday Soc., 1923, 19, 38) between surface tension and density,

$$
\begin{equation*}
\gamma=C(D-d)^{4} \text {. } \tag{2}
\end{equation*}
$$

In these equations, γ is the surface tension, T_{r} the reduced temperature, D and d are the densities of the liquid and saturated vapour, respectively, and γ_{0} and C are constants.

The first equation has been shown to give the experimental values of the surface tension of non-associated liquids from the ordinary temperature to within a few degrees of the critical point (Sugden, J., 1924, 125, 32). Equation (2) was shown by the present author to hold for a large number of liquids over a wide range of temperatures. Further, from this equation is derived the formula for calculating the parachor $[P]$ where

$$
\begin{equation*}
[P]=M C^{1 / 4}=M \gamma^{1 / 4} /(D-d) \tag{3}
\end{equation*}
$$

($M=$ molecular weight). This constant is found to be an accurately additive function of certain atomic and structural constants (Sugden, J., 1924, 125, 1177; Sugden, Reed, and Wilkins, J., 1925, 127, 1525 ; Sugden and Whittaker, ibid., p. 1868; Sugden and Wilkins,
ibid., p. 2517; this vol., p. 139), and in particular provides a clear experimental distinction between non-polar and semipolar double bonds.

These two equations, although empirical and at present not related to any theory of the liquid state, are supported by a considerable amount of experimental evidence. From them, it is obviously possible to deduce a number of other relationships between the variables concerned, including a modified form of the RamsayShields equation (compare Ferguson, Trans. Faraday Soc., 1923, 19, 41,407). The simplest of these is a relation between density and temperature

$$
\begin{equation*}
D-d=D_{0}\left(1-T_{r}\right)^{3 / 10} \tag{4}
\end{equation*}
$$

which is obtained by eliminating γ between equations (1) and (2). Abundant material for testing this equation is to be found in the data of Young (Proc. Roy. Soc. Dublin, 1910, 12, 374), which include measurements of the liquid and vapour densities of 30 substances. For all of them equation (4) is found to hold with remarkable accuracy; to save space, however, the calculations will only be given for the liquids to which equation (1) has been applied in a previous communication.

Equation (4) contains two constants, D_{0} and the critical temperature, since $T_{r}=T / T_{c}$. These were determined by calculating the value of $(D-d)^{10 / 3}$ at intervals of 40°, since this quantity is a linear function of temperature, and applying the method of "zero sum " (Campbell, Phil. Mag., 1920, 39, 177; 1924, 47, 816). The constants obtained in this manner were then used to calculate the density difference $(D-d)$ at each temperature; the results are shown in Table I, from which it will be seen that equation (4) reproduces the experimental data with a high degree of accuracy-in general the difference between the observed and the calculated values of $D-d$ is 1 part in 500 parts. A few greater deviations are found in the neighbourhood of the critical point, but in this region it is difficult to measure the density of the saturated vapour with precision.

The six liquids named in Table I belong to the class of unassociated liquids. Table II gives similar data for two associated liquids, viz., acetic acid and ethyl alcohol, and shows that equation (4) holds for a part of the range; above a definite temperature, however, the density decreases more rapidly than is indicated by the formula, and the critical point is reached at a lower temperature than would be expected from the slope of the density-temperature curve at low temperatures. This effect is scarcely appreciable for acetic acid, but more pronounced for ethyl alcohol. It would seem, therefore, that association has little or no influence on the density, provided

Table I.

Variation of Density with Temperature.

t.	Benzene.		
	$\begin{gathered} D-d \\ \text { (obs.). } \end{gathered}$	$\begin{gathered} D-d \\ \text { (calc.). } \end{gathered}$	Diff.
0°	$0 \cdot 9000$	$0 \cdot 8968$	-0.0032
40	$0 \cdot 8568$	$0 \cdot 8571$	$+0.0003$
80	$0 \cdot 8118$	$0 \cdot 8126$	$+0.0008$
120	$0 \cdot 7615$	0.7615	$\stackrel{+10000}{ }$
160	$0 \cdot 7012$	$0 \cdot 7008$	-0.0004
200	$0 \cdot 6250$	$0 \cdot 6246$	-0.0004
240	0.5137	0.5169	+0.0032
280	$0 \cdot 2854$	0-2743	-0.0111
t_{c} (obs.), 288.5.			

Ethyl ether.

0°	0.7354	0.7368	+0.0014
40	0.6557	0.6866	+0.0009
80	0.6286	0.6260	-0.0026
120	0.5471	0.5475	+0.0004
160	0.4256	0.4270	+0.0014
180	0.3133	0.3129	-0.0004
	t_{e} (obs.), 193.8.		

Ethyl acetate.

0°	0.9243	0.9235	-0.0008
40	0.8754	0.8760	+0.0006
80	0.8210	0.8217	+0.0007
120	0.7580	0.7571	-0.0009
160	0.6775	0.6767	-0.0008
200	0.5630	0.5641	+0.0011
240	0.3279	0.3296	+0.0017
t_{e} (obs.), 250.1.			

Chlorobenzene.

$D-d$ (obs.).	$D-d$ (calc.).	Diff.
1.1279	1.1237	-0.0042
1.0844	1.0845	+0.0001
1.0411	1.0420	+0.0009
0.9934	0.9944	+0.0010
0.9412	0.9416	+0.0004
0.8804	0.8795	-0.0009
0.8056	0.8057	+0.0001
0.7342	0.7378	$+0.0036\left(270^{\circ}\right)$
$t_{\text {c }}$ (obs.), 359.2.		

Methyl formate.

1.0025	1.0030	+0.0005
0.9415	0.9416	+0.0001
0.8698	0.8692	-0.0006
0.7801	0.7793	-0.0008
0.6513	0.6550	+0.0037
0.4134	0.4134	$\pm 0.0000\left(200^{\circ}\right)$
t_{c} (obs.), 214.		

Carbon tetrachloride.

1.6323	1.6301	-0.0022
1.5540	1.5558	+0.0018
1.4704	1.4722	+0.0018
1.3738	1.3758	+0.0020
1.2617	1.2605	-0.0012
1.1146	1.1134	-0.0012
0.8980	0.8973	-0.0007
$\boldsymbol{t}_{\boldsymbol{c}}$ (obs.), 283.15.		

that the degree of association does not change with temperature. This conclusion is supported by the fact that the value of D_{0} found for acetic acid is almost identical with that for its isomeride methyl formate, whilst the values for the alcohols, as will be shown in the following paper, are those to be expected from their composition.

Table II.

Variation of Density with Temperature. (Associated liquids.)

Acetic acid.

t.	$D-d$ (obs.).	$D-d$ (calc.).	Diff.
0°	1.0697	1.0700	+0.0003
40	1.0282	1.0288	+0.0006
80	0.9825	0.9826	+0.0001
120	0.9329	0.9315	-0.0014
160	0.8740	0.8722	-0.0018
200	0.8060	0.8020	-0.0040
240	0.7138	0.7136	-0.0002
280	0.5746	0.5878	+0.0132

t_{c} (obs.), 321.6.

Ethyl alcohol.

$D-d$ (obs.).	$D-d$ (calc.).	Diff.
0.8065	0.8070	+0.0005
0.7719	0.720	+0.001
0.7331	0.7326	-0.0005
0.6859	0.6876	+0.0017
0.6537	0.6344	+0.0207
0.5060	0.5682	+0.0522
0.2110	0.4764	+0.2654
-	-	-
\boldsymbol{t}. (obs.), 243.1.		

The critical temperatures predicted from the density observations are collected in Table III and are compared with the observed values and also with the values deduced from the variation of surface tension with density (Sugden, J., 1924, 125, 32). It will be seen that, in general, the unassociated liquids give a good agreement between the observed and the calculated critical temperatures, whilst for associated liquids the observed critical temperature is markedly lower than that predicted from the lower part of the density curve.

Table III.

Substance.Benzene	Critical temperature		
	from density.	from surface tension.	obs.
	285.5°	287°	288.5°
Chlorobenzene	358	358	359.2
Ethyl ether	191	193	$193 \cdot 8$
Methyl formate	211	212	214
Ethyl acetate	248	249	$250 \cdot 1$
Carbon tetrachloride	278	280	$283 \cdot 1$
Methyl alcohol	279	-	240
Ethyl alcohol	290	-	$243 \cdot 1$
Acetic acid	324	-	$321 \cdot 6$

Since equation (4) represents the variation of density with temperature with great precision as the temperature increases, it is reasonable to suppose that it will also hold as the temperature decreases. The constant D_{0} is therefore of considerable interest, since it represents the density of the supercooled liquid at absolute zero. The values of this constant are collected in Table IV, and if

Table IV.				
Zero Volumes and the Parachor.				
Substance.	D_{0}.	V_{0}.	[P].	[P]/V ${ }_{0}$.
Benzene	1.0965	71.2	207.1	2.91
Chlorobenzene	1.3323	$84 \cdot 4$	$244 \cdot 3$	$2 \cdot 89$
Ethyl ether	0.9616	77-1	$210 \cdot 0$	$2 \cdot 73$
Methyl formate	1.2863	46.7	138.0	2.96
Ethyl acetate	$1 \cdot 1538$	$76 \cdot 4$	216.0	$2 \cdot 83$
Carbon tetrachloride	$2 \cdot 0015$	$77 \cdot 4$	222.0	$2 \cdot 87$
Methyl alcohol	0.9936	$32 \cdot 3$	93.2*	$2 \cdot 89$
Ethyl alcohol	$0 \cdot 9846$	$46 \cdot 8$	132.2*	$2 \cdot 82$
Acetic acid	1.2853	46.7	138.0*	$2 \cdot 96$

these numbers are divided into the molecular weight of the liquid, the molecular volume (V_{0}) at absolute zero is obtained : this will be referred to as the " zero volume." The column headed $[P]$ gives the calculated value of the parachor for each liquid, and the fifth column shows that the ratio $[P] / V_{0}$ is nearly constant for the nine
substances tabulated. This constancy must, however, be regarded as fortuitous, since from equations 1,3 , and 4 it is readily shown that

$$
\begin{equation*}
[P]=\gamma_{0}{ }^{1 / 4} V_{0} \tag{5}
\end{equation*}
$$

For organic substances γ_{0} has values ranging from about 60 to 80 , so the fourth root of this, which gives the ratio $[P] / V_{0}$, does not vary much. If, however, the range is extended on the one hand to hydrogen, which has a small value of γ_{0}, and on the other hand to metals and their salts, which have large surface tensions, it is found that the zero volume is no longer proportional to the parachor.

A relation of greater significance is exhibited in Table V, which shows that the zero volume is very nearly a constant fraction of the critical volume. The data for hydrogen are given by Onnes (Proc. K. Akad. Wetensch. Amsterdam, 1914, 17, 528), and those for the other substances by Young (loc. cit.). Except in the case of hydrogen the ratio V_{0} / V_{c} is very nearly constant over the whole range considered.

Table V.
Zero Volumes and Critical Volumes.

Substance.	V_{0}.	V_{6}.	V_{0} / V_{c}.
Hydrogen	$22 \cdot 0$	46.9	$0 \cdot 373$
Ethyl ether	$77 \cdot 1$	281.9	$0 \cdot 273$
Carbon tetrachloride	$77 \cdot 4$	$276 \cdot 1$	$0 \cdot 280$
Methyl formate.	$46 \cdot 7$	172.0	$0 \cdot 271$
Methyl acetate	$61 \cdot 1$	227.8	$0 \cdot 268$
Methyl propionate	$75 \cdot 5$	282.0	$0 \cdot 268$
Ethyl acetate	$76 \cdot 4$	286.3	$0 \cdot 267$
Propyl formate	$76 \cdot 7$	$284 \cdot 8$	$0 \cdot 269$
Methyl butyrate	$90 \cdot 7$	$340 \cdot 1$	$0 \cdot 267$
Methyl isobutyrate	$90 \cdot 6$	33\%.9	$0 \cdot 267$
Ethyl propionate	90.9	$344 \cdot 3$	$0 \cdot 264$
Propyl acetate	$91 \cdot 3$	$345 \cdot 3$	0.264
n-Pentane	83.9	$310 \cdot 3$	$0 \cdot 270$
isoPentane	$86 \cdot 1$	$307 \cdot 0$	0.280
Diisopropyl	$99 \cdot 9$	357.3	0.280
n-Heptane	114.9	$427 \cdot 1$	0.269
n-Octane	$130 \cdot 8$	490.7	0.267
Diisobutyl	116.7	417.5	0.280
Benzene ...	71.2	$256 \cdot 1$	0.278
Fluorobenzene	$75 \cdot 1$	$271 \cdot 2$	$0 \cdot 277$
Chlorobenzene	$84 \cdot 4$	307.8	$0 \cdot 274$
Bromobenzene	88.3	323.5	$0 \cdot 273$

Formulæ of the type of equation (1) have been suggested by earlier workers. Thus van der Waals (Z. physikal. Chem., 1894, 13, 695) gave the equation

$$
\begin{equation*}
V-v=m V_{c}\left(1-T_{r}\right)^{\frac{1}{2}} \tag{5}
\end{equation*}
$$

based on the theory of corresponding states. Here V and v are the specific volumes of vapour and liquid, respectively. Verschaffelt
(Commun. of Leiden, No. 28, 1896) advanced the general formula

$$
\begin{equation*}
D-d=m D_{c}\left(1-T_{r}\right)^{n} \tag{6}
\end{equation*}
$$

making $n=0.367$ for carbon dioxide. Goldhammer (Z. physikal. Chem., 1910, 71, 577) tested this formula on Young's density data, using $n=1 / 3$ with fairly satisfactory results. It is readily shown that the exponent $3 / 10$ gives results in better agreement with the available data than does Goldhammer's exponent $1 / 3$, for $(D-d)^{10 / 3}$ is a linear function of temperature (see Table VI), as it should be according to equation (4), whereas $(D-d)^{3}$ exhibits a temperature coefficient which definitely increases with rise of temperature.

Table VI.

Temp.

Summary.

1. The variation of density with temperature from the freezing point to the critical point is represented accurately for normal liquids by the equation $D-d=D_{0}\left(1-T / T_{c}\right)^{3 / 10}$, where D and d are the densities of the liquid and saturated vapour, respectively, at T° Abs.
2. This equation also holds for associated liquids over the lower part of the temperature range, and in some cases nearly to the critical point.
3. The " zero volume," V_{0}, obtained by dividing the molecular weight by the constant D_{0}, is nearly proportional to the critical volume for a large number of substances.
[^0]
[^0]: Birkbeck College (University of London),
 Fetter Lane, E.C. 4.
 [Received, June 10th, 1927.]

